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Introduction

Form methods give a very efficient tool to solve evolutionary problems on Hilbert space.
They were developed by T. Kato [Kat80] and, in slightly different language by J.L. Lions.
In these lectures we give an introduction based on [AtE09], where some generalization
is introduced. The new setting is particularly efficient for the Dirichlet-to-Neumann
operator and degenerate equations. Besides this we give several other examples. These
lectures start by an introduction to holomorphic semigroups. Instead of the contour
argument found in the literature, we give a more direct argument based on the Hille-
Yosida theorem.
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1 The Hille-Yosida Theorem

A C0-semigroup on a Banach space X is a mapping T : (0,∞) → L(X) satisfying

T (t+ s) = T (t)T (s)

lim
t↓0

T (t)x = x (x ∈ X) .

The generator A of such a C0-semigroup is defined by

D(A) := {x ∈ X : lim
t↓0

T (t)x− x

t
exists}

Ax := lim
t↓0

T (t)x− x

t
.

Thus the domain D(A) of A is a subspace of A and A : D(A) → X is linear. One can
show that D(A) is dense in X. The main interest in semigroups lies in the associated
Cauchy problem

(CP )

{
u̇(t) = Au(t) (t > 0)

u(0) = x .

Indeed, if A is the generator of a C0-semigroup, then given x ∈ X, the function u(t) :=

T (t)x is the unique mild solution of (CP ); i.e.

u ∈ C([0,∞);X) ,

t∫
0

u(s) ds ∈ D(A)

for all t > 0 and

u(t) = x+ A

t∫
0

u(s) ds

u(0) = x .

If x ∈ D(A), then u is a classical solution; i.e. u ∈ C1([0,∞);X), u(t) ∈ D(A) for all
t ≥ 0 and u̇(t) = Au(t) for all t > 0. Conversely, if for each x ∈ X there exists a unique
mild solution of (CP ), then A generates a C0-semigroup [ABHN01, Theorem 3.1.12].
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1 The Hille-Yosida Theorem

In view of this characterization of well-posedness, it is of big interest to decide whether
a given operator generates a C0-semigroup. A positive answer is given by the famous
Hille-Yosida Theorem.

Theorem 1.1. (Hille-Yosida (1948)). Let A be an operator on X. The following are
equivalent.

(i) A generates a contractive C0-semigroup;

(ii) the domain of A is dense, λ− A is invertible for λ > 0 and ‖λ(λ− A)−1‖ ≤ 1.

Here we call a semigroup T contractive if ‖T (t)‖ ≤ 1 for all t > 0. By λ−A we mean
the operator with domain D(A) given by (λ − A)x := λx − Ax (x ∈ D(A)). So the
condition in (ii) means that λ − A : D(A) → X is bijective and ‖λ(λ − A)−1x‖ ≤ ‖x‖
for all λ > 0, x ∈ X. If X is reflexive, then this existence of the resolvent (λ−A)−1 and
the contractivity ‖λ(λ − A)−1‖ ≤ 1 imply already that the domain is dense [ABHN01,
Theorem 3.3.8].
Yosida’s proof is based on the Yosida-approximation: Assuming (ii), one easily sees

that
lim
λ−∞

λ(λ− A)−1x = x (x ∈ D(A)) ,

i.e. λ(λ− A)−1 converges strongly to the identity as λ→∞. This implies that

Aλ := Aλ(λ− A)−1 = λ2(λ− A)−1 − λ

approximates A as λ→∞ in the sense that

lim
λ−∞

Aλx = Ax (x ∈ D(A)) .

The operator Aλ is bounded, so one may define

etAλ :=
∞∑

n=0

tnAn
λ

n!

by the power series. Note that ‖λ2(λ− A)−1‖ ≤ λ. Since

etAλ = e−λtet‖λ2(λ−A)‖−1

,

it follows that
‖etAλ‖ ≤ e−λtet‖λ2(λ−A)‖−1 ≤ 1 .
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Yosida’s proof consists in showing that for x ∈ X the family (etAλx)λ>0 is a Cauchy net
as λ→∞. Then the C0-semigroup generated by A is given by

T (t)x := lim
λ→∞

etAλx (t > 0)

for all x ∈ X. We will come back to this formula when we talk about holomorphic
semigroups.

Remark 1.2. Hille’s independent proof is based on Euler’s formula for the exponential
function. Note that putting t = 1

λ
one has

λ(λ− A)−1 = (I − tA)−1 .

Hille showed that
T (t)x := lim

n→∞
(I − t

n
A)−nx

exists for all x ∈ X, see [Kat80].
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1 The Hille-Yosida Theorem
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2 Holomorphic semigroups

A C0-semigroup is defined on the real half-line (0,∞) with values in L(X). It is useful
to study when extensions to a sector

Σθ := {reiα : r > 0 , |α| < θ}

for some θ ∈ (0, π/2] exist. In this section X is a complex Banach space.

Definition 2.1. A C0-semigroup T is called holomorphic if there exists θ ∈ (0, π/2] and
a holomorphic extension

T̃ : Σθ → L(X)

of T which is locally bounded; i.e.

sup
z∈Σθ
|z|≤1

‖T̃ (z)‖ <∞ .

If ‖T̃ (z)‖ ≤ 1(z ∈ Σθ), then we call T a holomorphic sectorially contractive C0-semigroup
(of angle θ, if we want to make precise the angle).

The holomorphic extension T̃ automatically has the semigroup property

T̃ (z1 + z2) = T̃ (z1)T̃ (z2) (z1, z2 ∈ Σθ) .

Because of the boundedness assumption it follows that

lim
z→0
z∈Σθ

T̃ (z)x = x (x ∈ X) .

These properties are easy to see. In the sequel we will omit the ∼ and denote the exten-
sion T̃ simply by T . We should add a remark on vector-valued holomorphic functions.

Remark 2.2. If Y is a Banach space, Ω ⊂ C open, then a function f : Ω → Y is called
holomorphic if

f ′(z) = lim
h→0

f(z + h)− f(z)

h
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2 Holomorphic semigroups

exists in the norm of Y for all z ∈ Ω and f ′ : Ω → Y is continuous. It follows as in
the scalar case that f is analytic. It is remarkable that holomorphy is the same as weak
holomorphy (first observed by Grothendieck): A function f : Ω → Y is holomorphic if
and only if

y′ ◦ f : Ω → C

is holomorphic for all y′ ∈ Y . In our context the space Y is L(X), the space of all
bounded linear operators on X with the operator norm. If the function f is bounded
it suffices to test holomorphy with few functionals. We say that a subspace W ⊂ Y ′

seperates points if for x ∈ Y ,

〈y′, x〉 = 0 for y′ ∈ W implies y = 0 .

Assume that f : Ω → Y is bounded such that y′ ◦ f is holomorphic for all y′ ∈ W where
W is a separating subspace of Y ′. Then f is holomorphic. This result is due to [AN00],
see also [ABHN01, Theorem A7]. In particular, if Y = L(X), then a bounded function
f : Ω → L(X) is holomorphic if and only if 〈x′, f(·)x〉 is holomorphic for all x in a dense
subspace of X and all x′ in a separating subspace of X ′.

We recall a special form of Vitali’s Theorem (see [AN00], [ABHN01, Theorem A5]).
Let Ω ⊂ C be connected.

Theorem 2.3. (Vitali). Let fn : Ω → L(X) be holomorphic such that

a) ‖fn(z)‖ ≤M (z ∈ Ω, n ∈ N) and

b) f(z)x := lim
n→∞

fn(z)x

exists for all x ∈ X and all z ∈ Ω0, where Ω0 ⊂ Ω contains a stationary non-sequence
with limit point in Ω, i.e. there exist zk ∈ Ω0, z0 ∈ Ω, zk 6= z0 (k ∈ N), such that
lim
k→∞

zk = z0. Then
f(z)x := lim

n→∞
fn(z)x

exists for all x ∈ X, z ∈ Ω and f : Ω → L(X) is holomorphic.

Now we want to give a simple characterization of holomorphic sectorially contractive
semigroups. Assume that A is a densely defined operator on X such that (λ − A)−1

exists and
‖(λ− A)−1‖ ≤ 1 (λ ∈ Σθ) ,

where 0 < θ ≤ π/2. Let z ∈ Σθ. Then for λ > 0,

(zA)λ = zAλ
z
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is holomorphic in z. For each z ∈ Σθ, the operator zA is m-dissipative. By the Hille-
Yosida Theorem

T (z)x := lim
λ→∞

e(zA)λx

exists for all x ∈ X, z ∈ Σθ. Since e(zA)λ = ezAλ/z is holomorphic, T : Σθ → L(X) is
holomorphic by Vitali’s Theorem. If t > 0, then

T (t) = lim
λ→∞

etAλ/t = TA(t)

where TA is the semigroup generated by A. Since TA(t + s) = TA(t)(s), it follows from
analytic continuation that

T (z1 + z2) = T (z1)T (z2) (z1, z2 ∈ Σθ) .

Thus A generates a sectorially contractive holomorphic C0-semigroup of angle θ on X.
One sees as above that

TzA(t) = T (zt)

for all t > 0, z ∈ Σθ. We have shown the following.

Theorem 2.4. Let A be a densely defined operator on X, θ ∈ (0, π/2]. The following
are equivalent.

(i) A generates a sectorially contractive holomorphic C0-semigroup of angle θ;

(ii) (λ− A)−1 exists for λ ∈ Σθ and

‖λ(λ− A)−1‖ ≤ 1 (λ ∈ Σθ) .
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2 Holomorphic semigroups
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3 The Lumer-Phillips Theorem

Let H be a Hilbert space over K = R or C. An operator A on H is called accretive or
monotone if

Re(Ax|x) ≥ 0 (x ∈ D(A)) .

Theorem 3.1. (Lumer-Phillips). Let A be an operator on H. The following are equiv-
alent.

(i) −A generates a contraction semigroup;

(ii) A is accretive and (I + A) is surjective.

Accretivity of A can be reformulated by the condition

‖(λ+ A)x‖ ≥ ‖λx‖ (λ > 0, x ∈ D(A)) .

Thus if λ + A is surjective, then (λ + A) is invertible and ‖λ(λ + A)−1‖ ≤ 1. We also
say that A is m-accretive if condition (ii) is satisfied. If A is m-accretive and K = C,
then one can easily see that λ+ A is invertible for all λ ∈ C satisfying Reλ > 0 and

‖(λ+ A)−1‖ ≤ 1

Reλ
.

Due to the reflexivity of Hilbert spaces, each m-accretive operator A is densely defined
(see [ABHN01, Proposition 3.3.8]). Now we want to reformulate the Lumer-Phillips
Theorem for generators of semigroups which are contractive on a sector.

Theorem 3.2. (generators of sectorially contractive semigroups). Let A be an operator
on a complex Hilbert space H and let θ ∈ (0, π

2
). The following are equivalent.

(i) −A generates a holomorphic C0-semigroup which is contractive on the sector Σθ.

(ii) e±iθA is accretive and I + A is surjective.
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3 The Lumer-Phillips Theorem

Proof. (ii) ⇒ (i). Since e±iθA is accretive zA is accretive for all z ∈ Σθ. Since (I+A) is
surjective, the operator A is m-accretive. Thus (λ+A) is invertible whenever Reλ > 0.
Consequently (I + z) = z(z−1 +A) is invertible for all z ∈ Σθ. Thus zA is m−accretive
for all z ∈ Σθ. Now (i) follows from Theorem ??.
(i) ⇒ (ii). If −A generates a holomorphic semigroup which is contractive on Σθ, then
eiαA generates a contraction semigroup for |α| ≤ θ. Hence eiαA is m-accretive for
|α| ≤ θ.
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4 Forms: the complete case

We recall one of our most efficient tool to solve equations, the Lax-Milgram lemma which
is just a non-symmetric generalization of the Riesz-Fréchet representation Theorem from
1905.

Lemma 4.1. (Lax-Milgram 1954). Let V be a Hilbert space over K = R or C and let
a : V × V → K be sesquilinear, continuous and coercive, i.e.

Re a(u) ≥ α‖u‖2
V (u ∈ V )

for some α > 0. Let ϕ ∈ V ′ be a continuous anti-linear form, i.e. ϕ : V → K is
continuous and satisfies ϕ(u + v) = ϕ(u) + ϕ(v), ϕ(λu) = λ̄ϕ(u) (u, v ∈ V, λ ∈ K).
Then there is a unique u ∈ V such that

a(u, v) = ϕ(v) (v ∈ V ) .

Of course, to say that a is continuous means that

|a(u, v)| ≤M‖u‖V ‖v‖V (u, v ∈ V )

for some constant M . We let a(u) := a(u, u) for u ∈ V .
In general, the range condition in the Hille-Yosida Theorem is difficult to prove. How-

ever, if we look at operators associated with a form, the Lax-Milgram Lemma implies
automatically the range condition. We describe now our general setting in the complete
case. Given is a Hilbert space V over K = R or C and a continuous, coercive sesquilinear
form

a : V × V → K .

Moreover, we assume that H is another Hilbert space over K and j : V → H is a
continuous linear mapping with dense image. Now we associate an operator A on H

with the pair (a, j) in the following way: Given x, y ∈ H we say that x ∈ D(A) and
Ax = y if there exists u ∈ V such that j(u) = x and

a(u, v) = (y|j(v))H for all v ∈ V .
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4 Forms: the complete case

We first show that A is univocal: Assume that there exist u1, u2 ∈ V, y1, y2 ∈ H such
that

j(u1) = j(u2) = x and
a(u1, v) = (y1|j(v))H for all v ∈ V

and a(u2, v) = (y2|j(v)H for all v ∈ V .

Then a(u1 − u2, v) = (y1 − y2|j(v))H for all v ∈ V . Since j(u1 − u2) = 0, taking
v := u1 − u2 gives a(u1 − u2, u1 − u2) = 0. Since a is coercive, it follows that u1 = u2.
It follows that (y1|j(v))H = (y2|j(v))H for all v ∈ V . Since j has dense image, it follows
that y1 = y2.

It is clear from the definition that A : D(A) → H is linear. Our main result is the
following generation theorem. We first assume that K = C.

Theorem 4.2. (generation theorem in the complete case). The operator −A generates
a sectorially contractive holomorphic C0-semigroup T . If a is symmetric, then A is
selfadjoint.

Proof. Letting M ≥ 0 be the constant of continuity and α > 0 the constant of coercive-
ness as before, we have

| Im a(v)|
Re a(v)

≤ M‖v‖2
V

α‖v‖2
V

=
M

α

for all v ∈ V . Thus there exists θ′ ∈ [0, π
2
) such that

a(v) ∈ Σθ′ for all v ∈ V .

Let x ∈ D(A). There exists u ∈ V such that x = j(u) and a(u, v) = (Ax|j(v))H for
all v ∈ V . In particular, (Ax|x)H = a(u) ∈ Σθ′ . It follows that e±iθA is accretive
where θ = π

2
− θ′. In order to prove the range condition, let y ∈ H. Consider the form

b : V × V → C given by

b(u, v) = a(u, v) + (j(u)|j(v))H .

Then b is continuous and coercive. Let y ∈ H. Then ϕ(v) := (y|j(v))H defines a
continuous antilinear form ϕ on V . By the Lax-Milgram lemma 4.1 there exists a
unique u ∈ V such that

b(u, v) = ϕ(v) (v ∈ V ) .

Hence (y|j(v))H = a(u, v) + (j(u)|j(v))H ; i.e. a(u, v) = (y − j(u)|j(v))H (v ∈ V ). This
means that x := j(u) ∈ D(A) and Ax = y − x.
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The result is also valid in real Banach spaces. If T is a C0-semigroup on a real Banach
space X, then the C-linear extension TC of T on the complexification XC := X ⊕ iX of
X is a C0-semigroup given by TC(t)(x+ iy) := T (t)x+ iT (t)y. We call T holomorphic if
TC is holomorphic. The generation theorem above remains true on real Banach spaces.
In order to formulate a final result we want also allow a rescaling. Let X be a Banach
space over K and T be a C0-semigroup on X with generator A. Then for ω ∈ K

Tω(t) := eωtT (t)

defines a C0-semigroup whose generator is A+ω. Using this we obtain now the following
general generation theorem in the complete case. Let V,H be Hilbert spaces over K and
j : V → H linear with dense image. Let a : V × V → K be sesquilinear and continuous.
We call the form a j-elliptic if there exists ω ∈ R such that

(4.1) Re a(u) + ω‖j(u)‖H ≥ α‖u‖2
V

for all u ∈ V . Then we define the operator A associated with (j, a) as before by

D(A) := {x ∈ H : ∃u ∈ V, y ∈ H such that
j(u) = x and a(u, v) = (y|j(v))H for all v ∈ H}

Ax := y where j(u) = x, a(u, v) = (y|j(v))H (v ∈ V ) .

Theorem 4.3. The operator defined in this way is univocal. Moreover, −A generates a
holomorphic C0-semigroup on H.

Remark 4.4. The form a satisfies condition (4.1) if and only if the form aω given by

aω(u, v) = a(u, v) + ω(j(u)|j(v))H

is coercive. If Tω denotes the semigroup associated with aω and T the semigroup asso-
ciated with a, then

Tω(t) = e−ωtT (t) (t ≥ 0)

as is easy to see.
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4 Forms: the complete case
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5 The Stokes Operator

In this section we show as an example that the Stokes operator is selfadjoint and gener-
ates a holomorphic C0-semigroup. Let Ω ⊂ Rd be a bounded open set. We first discuss
the Dirichlet-Laplacian.

Theorem 5.1. (Dirichlet Laplacian). Let H = L2(Ω) and define the operator ∆D on
L2(Ω) by

D(∆D) = {u ∈ H1
0 (Ω) : ∆u ∈ L2(Ω)}

∆Du := ∆u .

Then ∆D is selfadjoint and generates a holomorphic C0-semigroup on L2(Ω).

Proof. Define a : H1
0 (Ω) ×H1

0 (Ω) → R by a(u, v) =
∫
Ω

∇u∇v. Then a is clearly contin-

uous. Poincaré’s inequality says that a is coercive. Consider the injection j of H1
0 (Ω)

into L2(Ω). Let A be the operator associated with (a, j). We show that A = −∆D.
In fact, let u ∈ D(A), Au = f . Then

∫
Ω

∇u∇v =
∫
Ω

fv for all v ∈ H1
0 (Ω). Taking in

particular v ∈ C∞
c (Ω) we see that −∆u = f . Conversely, let u ∈ H1

0 (Ω) such that
f := −∆u ∈ L2(Ω). Then

∫
Ω

fϕ =
∫
Ω

∇u∇ϕ = a(u, ϕ) for all ϕ ∈ C∞
c (Ω). This is just

the definition of the weak partial derivatives in H1(Ω). Since C∞
c (Ω) is dense in H1

0 (Ω),
it follows that

∫
Ω

fv = a(u, v) for all v ∈ H1
0 (Ω). Thus u ∈ D(A) and Au = f .

For our treatment of the Stokes operator it will be useful to consider the Dirichlet
Laplacian also in L2(Ω)d = L2(Ω)⊕ . . .⊕ L2(Ω).

Theorem 5.2. Define the symmetric form

a : H1
0 (Ω)d ×H1

0 (Ω)d → R by

a(u, v) =

∫
Ω

∇u∇v :=
d∑

j=1

∫
Ω

∇uj∇vj

19



5 The Stokes Operator

where u = (u1, . . . , ud). Then a is continuous amd coercive. Let j : H1
0 (Ω)d → L2(Ω)d

be the identity. The operator A associated with (a, j) on L2(Ω)d is given by

D(A) = {u ∈ H1
0 (Ω)d : ∆uj ∈ L2(Ω), j = 1, . . . d}

Au = (−∆u1, . . . ,−∆ud) =: −∆u .

We call ∆D := −A the Dirichlet Laplacian on L2(Ω)d.

In order to define the Stokes operator we need some preparation. Let D(Ω) := C∞
c (Ω)d

and let D0(Ω) := {ϕ ∈ D(Ω) : divϕ = 0}, where divϕ = ∂1ϕ1 + . . . + ∂dϕd, ϕ =

(ϕ1, . . . , ϕd). By D(Ω)′ we denote the dual space of D(Ω) (with the usual topology).
Each element S of D(Ω)′ can be written in a unique way as S = (S1, . . . , Sd) with
Sj ∈ C∞

c (Ω)′ so that

〈S, ϕ〉 =
d∑

j=1

〈Sj, ϕj〉

for ϕ = (ϕ1, . . . , ϕd) ∈ D(Ω).
We say that S ∈ H−1(Ω) if there exists a constant such that

|〈S, ϕ〉| ≤ c(

∫
|∇ϕ|2)

1
2 (ϕ ∈ D(Ω))

where |∇ϕ|2 = (|∇ϕ1|2 + . . .+ |∇ϕd|2. For the remainder of this section we assume that
Ω has Lipschitz boundary. We need the following result (see [Tem84, Remark 1.9, p.
14]).

Theorem 5.3. Let T ∈ H−1(Ω). The following are equivalent.

(i) 〈T, ϕ〉 = 0 for all ϕ ∈ D0;

(ii) there exists p ∈ L2(Ω) such that T = ∇p.

Note that condition (ii) means that

〈T, ϕ〉 =
d∑

j=1

〈∂jp, ϕj〉

= −
d∑

j=1

〈p, ∂jϕj〉

= 〈p, divϕ〉 .

From this, the implication (ii) ⇒ (i) is obvious. We omit the other implication.
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Now we consider the real Hilbert space L2(Ω)d with scalar product

(f |g) =
d∑

j=1

(fj|gj)L2(Ω) =
d∑

j=1

∫
Ω

fjgj .

We denote by
H := D⊥⊥

0 = D0

the closure of D0 in L2(Ω)d. We call H the space of all divergence free vectors in L2(Ω)d.
The orthogonal projection P from L2(Ω)d onto H is called the Helmholtz projection.
Now let V be the closure of D0 in H1(Ω)d. Thus V ⊂ H1

0 (Ω)d and div u = 0 for all
u ∈ V . One can actually show that

V = {u ∈ H1
0 (Ω)d : div v = 0} .

We define the form

a : V × V → R

a(u, v) =
d∑

j=1

(∇uj|∇vj)L2(Ω)

u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ V .

Then a is continuous and coercive. The space V is dense in H since it contains D0. We
consider the identity j : V → H. Let A be the operator associated with (a, j). Then
A is selfadjoint and −A generates a holomorphic C0-semigroup. The operator can be
described as follows.

Theorem 5.4. The operator A has the domain

D(A) = {u ∈ V : ∃π ∈ L2(Ω) such that −∆u+∇π ∈ H}

and is given by
Au = −∆u+∇π .

If u ∈ H1
0 (Ω)d, then ∆u ∈ H−1(Ω). In fact, for ϕ ∈ D(Ω),

|〈−∆u, ϕ〉| = | − 〈u,∆ϕ〉| = |
d∑

j=1

∫
Ω

∇uj∇ϕj| ≤ ‖u‖H1
0 (Ω)d‖ϕ‖H1

0 (Ω)d .

Proof of Theorem 5.4. Let u ∈ D(A), Au = f . Then f ∈ H, u ∈ V and a(u, v) =

(f |v)H for all v ∈ V . Thus, the distribution ∆u ∈ H−1(Ω) coincides with f on D0.
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5 The Stokes Operator

By Theorem 5.3 there exists π ∈ L2(Ω)′ such that −∆u + ∇π = f . Conversely, let
u ∈ V, f ∈ H, π ∈ L2(Ω) such that −∆u+∇π = f in D(Ω)′. Then for ϕ ∈ D0

a(u, ϕ) =

∫
Ω

∇u∇ϕ =

∫
Ω

∇u∇ϕ+ 〈∇π, ϕ〉 = (f |ϕ)L2(Ω)d .

Since D0 is dense in V , it follows that a(u, ϕ) = (f |ϕ)L2(Ω)d for all ϕ ∈ V . Thus,
u ∈ D(A) and Au = f .

The operator A is called the Stokes operator. We refer to [Mon06] for this approach
and further results on the Navier-Stokes equation. We conclude this section by giving
an example where j is not injective. Further examples will be seen in the sequel.

Proposition 5.5. Let H̃ be a Hilbert space and H ⊂ H̃ a closed subspace. Denote by
P the orthogonal projection onto H. Let Ṽ be a Hilbert space which is continuously and
densely embedded into H̃ and let a : Ṽ × Ṽ → R be a continuous, coercive form. Denote
by A the operator on H̃ associated with (a, j) where j is the injection of Ṽ into H̃ and
let B be the operator on H associated with (a, P ◦ j). Then

D(B) = {Pw : w ∈ D(A), Aw ∈ H} ,

BPw = Aw .

This is easy to see. In the context considered in this section we obtain the following
example.

Example 5.6. Let H̃ = L2(Ω)d, H = D0, Ṽ := H1
0 (Ω)d and a(u, v) =

∫
Ω

∇u∇v, j : Ṽ →

H̃, j(u) = u. Then the operator associated with (a, j) is A = −∆D as we have seen in
Theorem 5.2. Now let P be the Helmholtz projection and B the operator associated
with (a, P ). Then{

D(B) = {u ∈ H : ∃π ∈ L2(Ω), u+∇π ∈ D(∆D),∆(u+∇π) ∈ H}
Bu = ∆(u+∇π) .

This follows directly from Proposition 5.5. Thus, the operator B is selfadjoint and
generates a holomorphic semigroup.
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6 From forms to semigroups: the
incomplete case

In the preceeding sections we considered forms which were defined on a Hilbert space V .
Now we want to study a purely algebraic condition. At first we consider the complex
case. Let H be a complex Hilbert space. A sectorial form on H is a sesquilinear form

a : D(a)×D(a) → C

together with a linear mapping j : D(a) → H with dense image such that there exist
ω ≥ 0, θ ∈ [0, π/2) such that

a(u) + ω(‖j(u)‖2
H ∈ Σθ (u ∈ D(a)) .

If ω = 0, then we call the form 0-sectorial. To such a form, we associate an operator
A on H by stipulating for x, y ∈ H : x ∈ D(A), Ax = y :⇔ there exist un ∈ D(a) such
that

a) lim
n→∞

j(un) = x in H;

b) sup
n∈N

Re a(un) <∞;

c) lim
n→∞

a(un, v) = (y|j(v))H for all v ∈ D(a).

Theorem 6.1. The operator A associated with a sectorial form (a, j) is univocal and
−A generates a holomorphic C0-semigroup on H.

The proof of the theorem consists in a reduction to the complete case by considering
an appropriate completion of D(a). Here it is important that in Theorem 4.2 a non-
injective mapping j is allowed. We refer to [AtE09]. If C ⊂ H is a closed convex set, we
say that C is invariant under the semigroup T if

T (t)C ⊂ C (t ≥ 0) .
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6 From forms to semigroups: the incomplete case

Invariant sets are important to study positivity, L∞-contractivity, and many more prop-
erties. If the semigroup is associated with a form, then the following criterion is conve-
nient.

Theorem 6.2. (invariance). Let C ⊂ H be a closed convex set and let P be the orthog-
onal projection onto C. The semigroup T associated with a sectorial form (a, j) on H

leaves C invariant if and only if for each u ∈ D(a) there exists a sequence (wn)n∈N in
D(a) such that

a) lim
n→∞

j(wn) = Pj(u) in H;

b) lim sup
n→∞

Re a(wn, u− wn) ≥ 0 and

c) sup
n∈N

Re a(wn) <∞.

Corollary 6.3. Assume that for each u ∈ D(a), there exists w ∈ D(a) such that

j(w) = Pj(u) and
Re a(w, u− w) ≥ 0 .

Then T (t)C ⊂ C for all t ≥ 0.

In this section we want to use the invariance criterion to prove a generation theorem
in the incomplete case which is valid in real Hilbert spaces. Let H be a real Hilbert
space. A sectorial form on H is a bilinear mapping

a : D(a)×D(a) → R ,

where D(a) is a real vector space, together with a linear mapping j : D(a) → H with
dense image satisfying

|a(u, v)− a(v, u)| ≤ α(a(u)) + a(v)) + ω(‖j(u)‖2
H + ‖j(v)‖2

H)

for all u, v ∈ D(a) and some constants α ≥ 0, w ≥ 0. To such a form we associate
an operator A on H by stipulating for x, y ∈ H : x ∈ D(A), Ax = y :⇔ there exist
un ∈ D(a) satisfying

a) lim
n→∞

j(un) = x in H;

b) sup
n∈N

a(un) <∞ and

c) lim
n→∞

a(un, v) = (y|j(v))H for all v ∈ D(a).
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Then the following holds:

Theorem 6.4. The operator A is univocal and −A generates a holomorphic C0-semigroup
on H.

Proof. Consider the complexificationsHC = H⊕iH andD(aC) := D(a)+iD(a). Letting

aC(u, v) := a(Reu,Re v) + a(Imu, Im v) + i(a(Reu, Im v) + a(Imu,Re v))

for u = Reu+ i Imu, v = Re v+ i Im v ∈ D(aC), defines a sesquilinear form aC on D(aC).
Let J : D(aC) → HC be the C-linear extension of j. Let

b(u, v) = aC(u, v) + ω(J(u)|(J(v))HC (u, v ∈ D(aC)) .

Then

Im b(u) = a(Imu,Reu)− a(Reu, Imu)

Re b(u) = a(Reu) + a(Imu) + ω(‖j(Reu)‖2
H + ‖j(Imu)‖2

H) .

The assumption implies that | Im b(u)| ≤ cRe b(u) for some c > 0. Consequently, b(u) ∈
Σθ for θ = arctan c. Thus the operator B associated with b generates a C0-semigroup
SC on HC. It follows from Corollary 6.3 that H is invariant. The part Aω of B in H is
the generator of S(t) := SC(t)|H . It is easy to see that Aω − ω = A.

Remark 6.5. It is remarkable, and important for some applications, that (b) may be
replaced by

(b′) . lim
n,m→∞

a(un − um) = 0

For later purposes we carry over the invariance criterion Theorem 5.3 to the real case.

Corollary 6.6. Let H be a real Hilbert space and (a, j) a sectorial form on H with as-
sociated semigroup T . Let C ⊂ H be a closed convex set and P the orthogonal projection
onto C. Assume that for each u ∈ D(a) there exists w ∈ D(a) such that

j(w) = Pj(u) and a(w, u− w) ≥ 0 .

Then T (t)C ⊂ C for all t ≥ 0.

We want to formulate a special case of invariance. An operator S on a space Lp(Ω) is
called

positive if [f ≥ 0 implies Sf ≥ 0] and
submarkovian if [f ≤ 1 a.e. implies Sf ≤ 1 a.e.] .

Thus, an operator S is submarkovian if and only if it is positive and ‖Sf‖∞ ≤ ‖f‖∞ for
all f ∈ L2 ∩ L∞.
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6 From forms to semigroups: the incomplete case

Proposition 6.7. Consider the real space H = L2(Ω) and a sectorial form a on H.
Assume that for each u ∈ D(a) one has u ∧ 1 ∈ D(a) and

(u ∧ 1, (u− 1)+) ≥ 0 .

Then the semigroup T associated with a is submarkovian.

Proof. The set C := {u ∈ L2(Ω) : u ≤ 1 a.e.} is closed and convex. The orthogonal
projection P onto C is given by Pu = u ∧ 1. Thus u − Pu = (u − 1)+ and the result
follows from Corollary 6.3.

We conclude this section by some references to the literature. In many text books,
for example [Kat80],[Ouh05] one finds the notion of a sectorial form a on a complex
Hilbert space H. By this one understands a sesquilinear form a : D(a) × D(a) → C
where D(a) is a dense subspace of H such that a(u) +ω‖u‖2

H ∈ Σθ for all u ∈ D(a) and
some θ ∈ [0, π/2) and some ω ≥ 0. Then

‖u‖a := (Re a(u) + (ω + 1)‖u‖2
H)1/2

defines a norm on D(a). The form is called closed if D(a) is complete for this norm. This
corresponds to our complete case with V = D(a) and j the identity. If the form is not
closed, then one may consider the completion V of D(a). Since the injection D(a) → H

is continuous for the norm ‖ ‖a, it has a continuous extension j : V → H. This extension
may be injective or not. The form is called closable if j is injective. In the literature
only for closable forms generation theorems are given, see [AtE09] for precise references.
The results above show that the notion of closability is not needed. There is a unique
correspondance between sectorially quasi contractive holomorphic semigroups and closed
sectorial forms (see [AtE09] and [Kat80]). One looses uniqueness if one considers forms
which are merely closable or our general setting allowing arbitrary maps j : D(a) → H

with dense image. However, examples show that in many cases a natural operator is
obtained by this general framework.
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7 Degenerate diffusion

In this section we use our tools to show that degenerate elliptic operators generate
holomorphic semigroups on the real space L2(Ω). We start by a 1−dimensional example.

Example 7.1. (degenerate diffusion in dimension 1.) Let H = L2(a, b),−∞ ≤ a < b ≤
∞, be the real Hilbert space and let α, β, γ ∈ L∞loc(a, b) be real coefficients. We assume
that

γ− ∈ L∞(a, b) and that β2(x) ≤ c1 · α(x) (x ∈ (a, b))

for some constant c1 ≥ 0.

We define the bilinear form a on L2(a, b) by

a(u, v) =

b∫
a

(α(x)u′(x)v′(x) dx +β(x)u′(x)v(x) + γ(x)u(x)v(x)) dx

with domain
D(a) = H2

c (a, b) .

Then the form a is sectorial, i.e. there exist constants c ≥ 0, ω ∈ R such that

|a(u, v)− a(v, u)| ≤ c(a(u) + a(v)) + ω(‖u‖2
L2 + ‖v‖2

L2) .

As a consequence, letting A be the operator associated with a, we know that −A gen-
erates a holomorphic C0-semigroup T on L2(Ω). Moreover, T is submarkovian.

Proof. We use Young’s inequality

|xy| ≤ εx2 +
1

4ε
y2

twice. On one hand we have for δ > 0,

|a(u, v)− a(v, u)| = |
b∫

a

β(u′v − uv′) dx |

≤
b∫

a

(δβ2(u′2 + v′2) +
1

4δ
(u2 + v2)) dx .
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7 Degenerate diffusion

Thus

c(a(u) + a(v)) + ω(‖u‖2
H + ‖v‖2

H) =
b∫

a

(cα(u′2 + v′2) + cβ(u′u+ v′v) + (cγ + ω)(u2 + v2)) dx ≥

b∫
a

(cα− εβ2)(u′2 + v′2) − c2
1

4ε
(u2 + v2) + (cγ + ω)(u2 + v2) dx

≥
b∫

a

(cα− εβ2)(u′2 + v′2) + (ω − c‖γ−‖L∞ −
c2

4ε
)(u2 + v2) dx

≥ |a(u, v)− a(v, u)|

if (cα − εβ2) ≥ δβ2 and (ω − c‖γ−‖L∞ − c2

4ε
) ≥ 1

4δ
for some δ > 0, ε > 0, ω > 0. This is

certainly true if β2 ≤ c1α.

The condition β2 ≤ c1α shows in particular, that {x ∈ (a, b) : α(x) = 0} ⊂ {x ∈
(a, b) : β(x) = 0}. This one has to assume in any case since an operator of the form βu′

cannot generate a holomorphic semigroup.
A special case is the Black-Scholes Equation

ut +
σ2

2
x2uxx + rxux − ru = 0 .

We consider H = L2(0,∞) and let a(u, v) =
∞∫
0

(σ2

2
x2u′v′ + (σ − r)xu′v + ruv) dx with

D(a) = H1
c (0,∞).

It is not difficult to extend the example above to higher dimension:

Example 7.2. Let Ω ⊂ Rd be open and let aij, bj, c ∈ L∞loc(Ω) be real coefficients,
i, j = 1, . . . , d. Assume that c− ∈ L∞(Ω), that aij = aji and that

c1A(x)−B2(x) is positive semidefinite

for some c1 > 0 for almost all x ∈ Ω, where

A(x) = (aij(x))i,j=1,...,d, B(x) = diag(b1(x), . . . , bd(x)) .

Define the form a on L2(Ω) by

a(u, v) =

∫
Ω

{
d∑

i,j=1

aij(x)∂iu∂jv +
d∑

j=1

bj∂juv + cuv} dx
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with domain
D(a) = H1

c (Ω) .

Then a is sectorial. The associated semigroup T on L2(Ω) is submarkovian.

This and the previous example incorporate Dirichlet boundary conditions. In the next
one we consider a degenerate elliptic operator with Neumann boundary conditions.

Example 7.3. Let Ω ⊂ Rd be an open, possibly unbounded subset of Rd. Let aij ∈
L∞(Ω) be real coefficients such that for some θ ∈ [0, π/2),

d∑
i,j=1

aijξiξ̄j ∈ Σθ (ξ ∈ Cd) .

Consider the form a on L2(Ω) given by

a(u, v) =

∫ d∑
i,j=1

aij∂iu∂jv dx

with domain D(a) = H1(Ω). Then a is sectorial. Let T be the associated semigroup.
Our criteria show right away that T is submarkovian. It is remarkable that even

T∞(t)1Ω = 1Ω (t ≥ 0) .

For bounded Ω this is easy to prove, but otherwise more sophisticated tools are needed
(see [AtE09]). Note that T extends consistently to semigroups Tp on Lp(Ω), 2 ≤ p ≤ ∞,
where Tp is strongly continuous for p <∞ and T∞ is the adjoint of a strongly continuous
on L1(Ω).

We want to add an abstract result which shows that our solutions are some kind of
viscosity solutions. This is illustrated particularly well in the situation of Example 7.3.

Proposition 7.4. ([AtE09, Corollary 3.9]). Let V,H be real Hilbert spaces such that
V ↪→

d

H. Let a : V × V → R be continuous and sectorial. Assume that a(u) ≥ 0 for all

u ∈ V . Let b : V × V → R be continuous and coercive. Thus for each n ∈ N the form

a+
1

n
b : V × V → R

is continuous and coercive. Let An be associated with a+ 1
n
b and A with a. Then

(An + λ)−1f → (A+ λ)−1f as n→∞ in H
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7 Degenerate diffusion

for each f ∈ H,λ > 0. Moreover, denoting by Tn and T the semigroup generated by
−An and by −A one has

lim
n→∞

Tn(t)f = T (t)f in H

for all f ∈ H.

The point in the result is that the form a is merely sectorial and may be degenerate.
For instance, in Example 7.3 aij(x) = 0 is allowed. If we perturb by the Laplacian, we
obtain a coercive form

an : H1(Ω)×H1(Ω) → R

given by

an(u, v) = a(u, v) +
1

n

∫
Ω

∇u∇v .

Then Proposition 7.4 says that in the situation of Example 7.3 for this perturbation one
has (An + λ)−1f → (A+ λ)−1f as n→∞ in L2(Ω) for all f ∈ L2(Ω).
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8 The Dirichlet-to-Neumann
operator

Let Ω ⊂ Rd be a bounded open set with boundary ∂Ω. Our point is that we do not need
any regularity assumption on Ω. Still we are able to define the Dirichlet-to-Neumann
operator on L2(∂Ω) and to show that it is selfadjoint and generates a submarkovian
semigroup on L2(Ω). Formally, the Dirichlet-to-Neumann operator D0 is defined as
follows. Given ϕ ∈ L2(Γ), one solves the Dirichlet problem{

∆u = 0 in Ω

u|∂Ω
= ϕ

and defines D0ϕ = ∂u
∂ν
. We will give a precise definition using weak derivatives. We

consider the space L2(∂Ω) := L2(∂Ω,Hd−1) with the (d − 1)-dimensional Hausdorff
measure Hd−1. Integrals over ∂Ω are always taken with respect to Hd−1, those over Ω

always with respect to the Lebesgue measure.

Definition 8.1. (normal derivative). Let u ∈ H1(Ω) such that ∆u ∈ L2(Ω). We say
that

∂u

∂ν
∈ L2(∂Ω)

if there exists g ∈ L2(∂Ω) such that∫
Ω

∆uv +

∫
Ω

∇u∇v =

∫
∂Ω

gv

for all v ∈ H1(Ω). This determines g uniquely and we let ∂u
∂ν

:= g.

Recall, that for u ∈ L1
loc(Ω) the Laplacian ∆u is defined in the sense of distributions.

If ∆u = 0, then u ∈ C∞(Ω) by elliptic regularity. Next we define traces of a function
u ∈ H1(Ω).
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8 The Dirichlet-to-Neumann operator

Definition 8.2. (traces). Let u ∈ H1(Ω). We let

tr(u) = {g ∈ L2(Ω) : ∃un ∈ H1(Ω) ∩ C(Ω̄)

lim
n→∞

un = u in H1(Ω) and

lim
n→∞

un|∂Ω
= g in L2(∂Ω)} .

For arbitrary open sets the trace is not unique. However, if Ω is a Lipschitz domain,
then each u ∈ H1(Ω) has a unique trace u|∂Ω

∈ L2(∂Ω). Now we are in the position to
define the Dirichlet-to-Neumann operator D0. Its domain is given by

D(D0) := {ϕ ∈ L2(∂Ω) : ∃u ∈ H1(Ω) such that ∆u = 0 ,

∂u

∂ν
∈ L2(∂Ω) and

such that ϕ ∈ tr(u)}

and we define
D0 =

∂u

∂ν

where u ∈ H1(Ω) is such that ∆u = 0, ∂u
∂ν
∈ L2(∂Ω), ϕ ∈ tr(u). It is part of our result

that this opertor is univocal.

Theorem 8.3. The operator D0 is selfadjoint and −D0 generates a submarkovian semi-
group on L2(∂Ω).

In the proof we use Theorem 6.4. Here a non-injective mapping j is needed. We also
need Maz’ya’s inequality. Let q = 2d

d−1
. There exists a constant cM such that

(

∫
Ω

|u|q)2/q ≤ cM(

∫
Ω

|∇u|2 +

∫
∂Ω

|u|2)

for all u ∈ C(Ω̄) ∩H1(Ω).

Proof of Theorem 8.3. We consider real spaces. Our Hilbert space is L2(∂Ω). Let
D(a) = C(Ω̄) ∩ H1(Ω), a(u, v) =

∫
Ω

∇u∇v, j(u) = u|∂Ω
∈ L2(∂Ω). Then a is symmetric

and a(u) ≥ 0 for all u ∈ D(a). Thus the sectoriality condition before Theorem 6.4
is trivally satisfied. Denote by A the operator on L2(∂Ω) associated with (a, j). Let
ϕ, ψ ∈ L2(∂Ω). Then ϕ ∈ D(A) and Aϕ = ψ if and only if there exist un ∈ C(Ω̄)∩H1(Ω)

such that un|∂Ω
→ ϕ in L2(∂Ω), a(un, v) →

∫
∂Ω

ψv|∂Ω
and lim

n,m→∞

∫
Ω

|∇(un−um)|2 = 0. Now

Maz’ya’s inequality implies that (un)n∈N is a Cauchy sequence in H1(Ω). Thus lim
n→∞

un =
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u exists in H1(Ω), and so ϕ ∈ tr(u). Moreover
∫

∂Ω

ψv = lim
n→∞

∫
Ω

∇un∇v =
∫
Ω

∇u∇v for all

v ∈ H1(Ω). Taking as v test functions, we see that ∆u = 0. Thus∫
Ω

∇u∇v +

∫
Ω

∆uv =

∫
∂Ω

ψv

for all v ∈ H1(Ω). Consequently, ∂u
∂ν

= ψ. We have shown that A ⊂ D0. Conversely, let
ϕ ∈ D(D0), D0ϕ = ψ. Then there exists u ∈ H1(Ω) such that ∆u = 0, ϕ ∈ tr(u) and
∂u
∂v

= ψ. Since ϕ ∈ tr(u) there exist un ∈ C(Ω̄) ∩ H1(Ω) such that un → u in H1(Ω)

and un|∂Ω
→ ϕ in L2(∂Ω). It follows that j(un) = un|Γ

→ ϕ in L2(∂Ω), (a(un))n∈N is
bounded and

a(un, v) =

∫
Ω

∇un∇v →
∫
Ω

∇u∇v =

∫
Ω

∇u∇v +

∫
Ω

∆uv =

∫
∂Ω

ψv

for all v ∈ H1(Ω) ∩ C(Ω̄). Thus, ϕ ∈ D(A) and Aϕ = ψ by the definition of the
associated operator. Since a is symmetic A is selfadjoint. Now the claim follows from
Theorem 6.4.
Our criteria easily apply and show that semigroup generated by −D0 is submarkovian.
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8 The Dirichlet-to-Neumann operator
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